Research Publications

Avoidance, confusion or solitude? Modelling how noise pollution affects whale migration

Johnston, S. T., and Painter, K. J., 2024, Movement Ecology, 12 (1), 17.

https://doi.org/10.1186/s40462-024-00458-w

TRPV4 is expressed by enteric glia and muscularis macrophages of the colon but does not play a prominent role in colonic motility

Rajasehkar P., et al., 2024, bioRxiv, 2024.01.09.574831.

https://doi.org/10.1101/2024.01.09.574831

Mathematical assessment of the role of intervention problems for malaria control

Korsah, M. A., Johnston, S. T., Tiedje, K. E., Day, K. P., Flegg, J. A., and Walker, C. R., 2023, medRxiv, 56 (48), 48LT01.

https://doi.org/10.1101/2023.12.18.23300185

Thermodynamically-consistent, reduced models of gene regulatory networks

Pan, M., Gawthrop, P. J., Faria, M., and Johnston, S. T., 2023, bioRxiv, 20 (207), 20230356.

https://doi.org/10.1101/2023.11.13.566770

Intent matters: how flow and forms of information impact collective navigation

Hodgson, T. M., Johnston, S. T., Ottobre, M., and Painter, K. J., 2023, Journal of the Royal Society Interface, 20 (207), 20230356.

https://doi.org/10.1098/rsif.2023.0356

Exact sharp-fronted solutions for nonlinear diffusion on evolving domains

Johnston, S. T., and Simpson, M. J., 2023, Journal of Physics A, 56 (48), 48LT01.

https://doi.org/10.1088/1751-8121/ad0699

Exact solutions for diffusive transport on heterogeneous growing domains

Johnston, S. T., and Simpson, M. J., 2023, Proceedings of the Royal Society A, 479 (2276), 20230263.

https://doi.org/10.1098/rspa.2023.0263

Frontiers of mathematical biology: A workshop honouring Professor Edmund Crampin

Araujo, R., et al., 2023, Mathematical Biosciences, 359, 109007.

https://doi.org/10.1016/j.mbs.2023.109007

Molecular communication for quorum sensing inspired cooperative drug delivery

Fang, Y., Johnston, S. T., Faria, M., Huang, X., Eckford, A. W., and Evans, J., 2023, IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 9 (1), 100-105.

https://doi.org/10.1109/TMBMC.2023.3240876

Analysis of molecular communication systems employing receivers covered by heterogeneous receptors

Huang, X., Fang, Y., Johnston, S. T., Faria, M., Yang, N., and Schober, R., 2023, IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 9 (1), 63-78.

https://doi.org/10.1109/TMBMC.2023.3234807

Capturing and quantifying particle transcytosis with microphysiological intestine‐on‐chip models

Delon, L. C., Faria, M., Jia, Z., , Johnston, S. T., Gibson, R., Prestidge, C. A., and Thierry, B., 2023, Small Methods, 7 (1), 2200989.

https://doi.org/10.1002/smtd.202200989

IP3R activity increases frequency of RyR-mediated sparks by elevating dyadic Ca2+

Chung, J., Tilūnaitė, A., Ladd, D., Hunt, H., Soeller, C., Crampin, E. J., Johnston, S. T., Roderick, H. L., and Rajagopal, V., 2023, Mathematical Biosciences, 355, 108923.

https://doi.org/10.1016/j.mbs.2022.108923

Free and interfacial boundaries in individual-based models of multicellular biological systems

Germano, D. P. J., Zanca, A., Johnston, S. T., Flegg, J. A., and Osborne, J. M., 2023, Bulletin of Mathematical Biology, 85 (11), 111.

https://doi.org/10.1007/s11538-023-01214-8

Equation learning to identify nano-engineered particle–cell interactions: an interpretable machine learning approach

Johnston, S. T., and Faria, M., 2022, Nanoscale, 14 (44), 16502-16515.

https://doi.org/10.1039/D2NR04668G

On predicting heterogeneity in nanoparticle dosage

Dowling, C. V., Cevaal, P. M., Faria, M., and Johnston, S. T., 2022, Mathematical Biosciences, 354, 108928.

https://doi.org/10.1016/j.mbs.2022.108928

Modelling realistic 3D deformations of simple epithelia in dynamic homeostasis

Germano, D. P. J., Johnston, S. T., Crampin, E. J., and Osborne, J. M., 2022, Mathematical Biosciences, 352, 108895

https://doi.org/10.1016/j.mbs.2022.108895

Analysis of Receiver Covered by Heterogeneous Receptors in Molecular Communications

Huang, X., Fang, Y., Johnston, S. T., Faria, M., Yang, N., and Schober, R., 2022, IEEE International Conference on Communications.

https://doi.org/10.1109/ICC45855.2022.9839114

Extinction of bistable populations is affected by the shape of their initial spatial distribution

Li, Y., Johnston, S. T., Buenzli, P. R., van Heijster, P., and Simpson, M. J., 2022, Bulletin of Mathematical Biology 84, 21.

https://doi.org/10.1007/s11538-021-00974-5

Spatio-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density

Ahmed-Cox, A., Pandzic, E., Johnston, S. T., Heu, C., McGhee, J. B., Mansfeld, F. M., Crampin, E. J., Davis, T. P., Whan, R. M., and Kavallaris, M., 2022, Journal of Controlled Release 341, 661-675.

https://doi.org/10.1016/j.jconrel.2021.12.014

Bio-nano science: better metrics would accelerate progress

Faria, M., Johnston, S. T., Mitchell, A. J., Crampin, E. J., and Caruso, F., 2021, Chemistry of Materials 33 (19), 7613-7619.

https://doi.org/10.1021/acs.chemmater.1c02369

Modelling collective navigation via nonlocal communication

Johnston, S. T., and Painter, K. J., 2021, Journal of the Royal Society Interface 18 (182), 20210383.

https://doi.org/10.1098/rsif.2021.0383

Understanding nano-engineered particle-cell interactions: biological insights from mathematical models

Johnston, S. T., Faria, M., and Crampin, E. J., 2021, Nanoscale Advances 3 (8), 2139-2156.

https://doi.org/10.1039/D0NA00774A

Unpacking the Allee effect: determining individual-level mechanisms that drive global population dynamics

Fadai, N. T., Johnston, S. T., and Simpson, M. J., 2020, Proceedings of the Royal Society A 476 (2241), 20200350.

https://doi.org/10.1098/rspa.2020.0350

Predicting population extinction in lattice-based birth-death-movement models

Johnston, S. T., Simpson, M. J., and Crampin, E. J., 2020, Proceedings of the Royal Society A 476 (2238), 20200089.

https://doi.org/10.1098/rspa.2020.0089

Isolating the sources of heterogeneity in nano-engineered particle-cell interactions

Johnston, S. T., Faria, M., and Crampin, E. J., 2020, Journal of the Royal Society Interface 17 (166), 20200221.

https://doi.org/10.1098/rsif.2020.0221

Accurate particle-based reaction algorithms for fixed timestep simulators

Johnston, S. T., Angstmann, C. N., Arjunan, S. N. V., Beentjes, C. H. L., Coulier, A., Isaacson, S. A., Khan, A. A., Lipkow, K., Andrews, S. S., 2020, MATRIX Annals, 149-164.

https://doi.org/10.1007/978-3-030-38230-8_11

Revisiting cell-particle association in vitro: a quantitative method to compare particle performance

Faria, M., Noi, K. F., Dai, Q., Bjornmalm, M., Johnston, S. T., Kempe, K., Caruso, F., Crampin, E. J., 2019, Journal of Controlled Release 307, 355-367.

https://doi.org/10.1016/j.jconrel.2019.06.027

Selective metal-phenolic assembly from complex multicomponent mixtures

Lin, G., Rahim, M. A., Leeming, M. G., Cortez-Jugo, C., Besford, Q. A., Ju, Y., Zhong, Q.-Z., Johnston, S. T., Zhou, J., Caruso, F., 2019, ACS Applied Materials & Interface 11 (19), 17714-17721.

https://doi.org/10.1021/acsami.9b04195

Corrected pair correlation functions for environments with obstacles

Johnston, S. T., and Crampin, E. J., 2019, Physical Review E 99 (3), 032124.

https://doi.org/10.1103/PhysRevE.99.032124

The impact of short- and long-range perception on population movements

Johnston, S. T., and Painter, K. J., 2019, Journal of Theoretical Biology 460, 227-242.

https://doi.org/10.1016/j.jtbi.2018.10.031

Self-assembly of nano-to-macroscopic metal-phenolic materials

Yun, G., Besford, Q. A., Johnston, S. T., Richardson, J. J., Pan, S., Biviano, M., and Caruso, F., 2018, Chemistry of Materials 30 (16), 5750-5758.

https://doi.org/10.1021/acs.chemmater.8b02616

An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose

Johnston S. T., Faria M. and Crampin, E. J., 2018, Journal of the Royal Society Interface 15 (144), 20180364.

https://doi.org/10.1098/rsif.2018.0364

A new and accurate continuum description of moving fronts

Johnston, S. T., Baker, R. E., and Simpson, M. J., 2017, New Journal of Physics 19 (3), 033010.

https://doi.org/10.1088/1367-2630/aa5bf5

Co-operation, competition and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves

Johnston, S. T., Baker, R. E., McElwain, D. L. S., and Simpson, M. J., 2017, Scientific Reports 7, 41234.

http://doi.org/10.1038/srep42134

Quantifying the effect of experimental design choices for in vitro scratch assays

Johnston S. T., Ross, J. V., Binder, B. J., McElwain, D. L. S., Haridas, P., and Simpson, M. J., 2016, Journal of Theoretical Biology 400, 19-31.

https://doi.org/10.1016/j.jtbi.2016.04.012

Filling the gaps: a robust description of adhesive birth-death-movement processes

Johnston, S. T., Baker, R. E., and Simpson, M. J., 2016, Physical Review E 93 (4), 042413.

https://doi.org/10.1103/PhysRevE.93.042413

Modelling the movement of interacting cell populations: a moment dynamics approach

Johnston, S. T., Baker, R. E., and Simpson, M. J., 2015, Journal of Theoretical Biology 370, 81-92.

https://doi.org/10.1016/j.jtbi.2015.01.025

Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM assay data using the Fisher-Kolmogorov model

Johnston S. T., Shah, E. T., Chopin, L. K., McElwain, D. L. S., and Simpson, M. J., 2015, BMC Systems Biology 9 (38) 400, 19-31.

https://doi.org/10.1186/s12918-015-0182-y

Interpreting scratch assays using pair density dynamics and approximate Bayesian computation

Johnston, S. T., Simpson, M. J., McElwain, D. L. S., Binder, B. J., and Ross, J. V., 2014, Open Biology 4 (9), 140097.

https://doi.org/10.1098/rsob.140097

How much information can be obtained from tracking the position of the leading edge in a scratch assay?

Johnston, S. T., Simpson, M. J., and Baker, R. E., 2014, Journal of the Royal Society Interface 11 (97), 20140325.

https://doi.org/10.1098/rsif.2014.0325

Lattice-free descriptions of collective motion with crowding and adhesion

Johnston, S. T., Simpson, M. J., and Plank, M. J., 2013, Physical Review E 88 (6), 062720.

https://doi.org/10.1103/PhysRevE.88.062720

Mean-field descriptions of collective migration with strong adhesion

Johnston, S. T., Simpson, M. J., and Baker, R. E., 2012, Physical Review E 85 (5), 051922.

https://doi.org/10.1103/PhysRevE.85.051922